Eurographics Digital Library

This is the DSpace 7 platform of the Eurographics Digital Library.
  • The contents of the Eurographics Digital Library Archive are freely accessible. Only access to the full-text documents of the journal Computer Graphics Forum (joint property of Wiley and Eurographics) is restricted to Eurographics members, people from institutions who have an Institutional Membership at Eurographics, or users of the TIB Hannover. On the item pages you will find so-called purchase links to the TIB Hannover.
  • As a Eurographics member, you can log in with your email address and password from https://services.eg.org. If you are part of an institutional member and you are on a computer with a Eurographics registered IP domain, you can proceed immediately.
  • From 2022, all new releases published by Eurographics will be licensed under Creative Commons. Publishing with Eurographics is Plan-S compliant. Please visit Eurographics Licensing and Open Access Policy for more details.
 

Recent Submissions

Item
DivaTrack: Diverse Bodies and Motions from Acceleration-Enhanced 3-Point Trackers
(The Eurographics Association and John Wiley & Sons Ltd., 2024) Yang, Dongseok; Kang, Jiho; Ma, Lingni; Greer, Joseph; Ye, Yuting; Lee, Sung-Hee; Bermano, Amit H.; Kalogerakis, Evangelos
Full-body avatar presence is important for immersive social and environmental interactions in digital reality. However, current devices only provide three six degrees of freedom (DOF) poses from the headset and two controllers (i.e. three-point trackers). Because it is a highly under-constrained problem, inferring full-body pose from these inputs is challenging, especially when supporting the full range of body proportions and use cases represented by the general population. In this paper, we propose a deep learning framework, DivaTrack, which outperforms existing methods when applied to diverse body sizes and activities. We augment the sparse three-point inputs with linear accelerations from Inertial Measurement Units (IMU) to improve foot contact prediction. We then condition the otherwise ambiguous lower-body pose with the predictions of foot contact and upper-body pose in a two-stage model. We further stabilize the inferred full-body pose in a wide range of configurations by learning to blend predictions that are computed in two reference frames, each of which is designed for different types of motions. We demonstrate the effectiveness of our design on a large dataset that captures 22 subjects performing challenging locomotion for three-point tracking, including lunges, hula-hooping, and sitting. As shown in a live demo using the Meta VR headset and Xsens IMUs, our method runs in real-time while accurately tracking a user's motion when they perform a diverse set of movements.
Item
OptFlowCam: A 3D-Image-Flow-Based Metric in Camera Space for Camera Paths in Scenes with Extreme Scale Variations
(The Eurographics Association and John Wiley & Sons Ltd., 2024) Piotrowski, Lisa; Motejat, Michael; Rössl, Christian; Theisel, Holger; Bermano, Amit H.; Kalogerakis, Evangelos
Interpolation between camera positions is a standard problem in computer graphics and can be considered the foundation of camera path planning. As the basis for a new interpolation method, we introduce a new Riemannian metric in camera space, which measures the 3D image flow under a small movement of the camera. Building on this, we define a linear interpolation between two cameras as shortest geodesic in camera space, for which we provide a closed-form solution after a mild simplification of the metric. Furthermore, we propose a geodesic Catmull-Rom interpolant for keyframe camera animation. We compare our approach with several standard camera interpolation methods and obtain consistently better camera paths especially for cameras with extremely varying scales.
Item
Cinematographic Camera Diffusion Model
(The Eurographics Association and John Wiley & Sons Ltd., 2024) Jiang, Hongda; Wang, Xi; Christie, Marc; Liu, Libin; Chen, Baoquan; Bermano, Amit H.; Kalogerakis, Evangelos
Designing effective camera trajectories in virtual 3D environments is a challenging task even for experienced animators. Despite an elaborate film grammar, forged through years of experience, that enables the specification of camera motions through cinematographic properties (framing, shots sizes, angles, motions), there are endless possibilities in deciding how to place and move cameras with characters. Dealing with these possibilities is part of the complexity of the problem. While numerous techniques have been proposed in the literature (optimization-based solving, encoding of empirical rules, learning from real examples,...), the results either lack variety or ease of control. In this paper, we propose a cinematographic camera diffusion model using a transformer-based architecture to handle temporality and exploit the stochasticity of diffusion models to generate diverse and qualitative trajectories conditioned by high-level textual descriptions. We extend the work by integrating keyframing constraints and the ability to blend naturally between motions using latent interpolation, in a way to augment the degree of control of the designers. We demonstrate the strengths of this text-to-camera motion approach through qualitative and quantitative experiments and gather feedback from professional artists. The code and data are available at https://github.com/jianghd1996/Camera-control.
Item
Stylized Face Sketch Extraction via Generative Prior with Limited Data
(The Eurographics Association and John Wiley & Sons Ltd., 2024) Yun, Kwan; Seo, Kwanggyoon; Seo, Chang Wook; Yoon, Soyeon; Kim, Seongcheol; Ji, Soohyun; Ashtari, Amirsaman; Noh, Junyong; Bermano, Amit H.; Kalogerakis, Evangelos
Facial sketches are both a concise way of showing the identity of a person and a means to express artistic intention. While a few techniques have recently emerged that allow sketches to be extracted in different styles, they typically rely on a large amount of data that is difficult to obtain. Here, we propose StyleSketch, a method for extracting high-resolution stylized sketches from a face image. Using the rich semantics of the deep features from a pretrained StyleGAN, we are able to train a sketch generator with 16 pairs of face and the corresponding sketch images. The sketch generator utilizes part-based losses with two-stage learning for fast convergence during training for high-quality sketch extraction. Through a set of comparisons, we show that StyleSketch outperforms existing state-of-the-art sketch extraction methods and few-shot image adaptation methods for the task of extracting high-resolution abstract face sketches.We further demonstrate the versatility of StyleSketch by extending its use to other domains and explore the possibility of semantic editing. The project page can be found in https://kwanyun.github.io/stylesketch_project.
Item
GANtlitz: Ultra High Resolution Generative Model for Multi-Modal Face Textures
(The Eurographics Association and John Wiley & Sons Ltd., 2024) Gruber, Aurel; Collins, Edo; Meka, Abhimitra; Mueller, Franziska; Sarkar, Kripasindhu; Orts-Escolano, Sergio; Prasso, Luca; Busch, Jay; Gross, Markus; Beeler, Thabo; Bermano, Amit H.; Kalogerakis, Evangelos
High-resolution texture maps are essential to render photoreal digital humans for visual effects or to generate data for machine learning. The acquisition of high resolution assets at scale is cumbersome, it involves enrolling a large number of human subjects, using expensive multi-view camera setups, and significant manual artistic effort to align the textures. To alleviate these problems, we introduce GANtlitz (A play on the german noun Antlitz, meaning face), a generative model that can synthesize multi-modal ultra-high-resolution face appearance maps for novel identities. Our method solves three distinct challenges: 1) unavailability of a very large data corpus generally required for training generative models, 2) memory and computational limitations of training a GAN at ultra-high resolutions, and 3) consistency of appearance features such as skin color, pores and wrinkles in high-resolution textures across different modalities. We introduce dual-style blocks, an extension to the style blocks of the StyleGAN2 architecture, which improve multi-modal synthesis. Our patch-based architecture is trained only on image patches obtained from a small set of face textures (<100) and yet allows us to generate seamless appearance maps of novel identities at 6k×4k resolution. Extensive qualitative and quantitative evaluations and baseline comparisons show the efficacy of our proposed system.